
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 183 (2006) 259–268
Hadamard NMR spectroscopy for two-dimensional quantum
information processing and parallel search algorithms

T. Gopinath, Anil Kumar *

NMR Quantum Computing and Quantum Information Group, Department of Physics and NMR Research Centre, Indian Institute of Science,

Bangalore 560012, India

Received 28 July 2006; revised 24 August 2006
Available online 28 September 2006
Abstract

Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-
dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is fast-
er and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an
extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and
implementation of a parallel search algorithm.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Quantum computation; Hadamard spectroscopy; Spatial encoding; Parallel search algorithm
1. Introduction

The use of quantum systems for information processing
was first introduced by Benioff [1]. In 1985 Deutsch
described quantum computers which exploit the superposi-
tion of multi particle states, thereby achieving massive par-
allelism [2]. Researchers have also studied the possibility of
solving certain types of problems more efficiently than can
be done on conventional computers [3–5]. These theoretical
possibilities have generated significant interest for experi-
mental realization of quantum computers [6,7]. Several
techniques are being exploited for quantum computing
and quantum information processing including nuclear
magnetic resonance (NMR) [8,9].

NMR has played a leading role for the practical dem-
onstration of quantum gates and algorithms [10–12]. In
NMR, individual spins having different Larmor frequen-
cies and weakly coupled to each other are treated as
individual qubits. The unitary operators needed for the
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implementation, have mostly been realized using spin
selective as well as transition selective radio-frequency
pulses and coupling evolution, utilizing spin–spin (J) or
dipolar couplings among the spins [13–16]. The final step
of any quantum computation is the read out of the out-
put. In NMR the read out is obtained by selectively
detecting the magnetization of each spin or by tomogra-
phy of full density matrix [17,18]. It was first proposed
by Ernst and co-workers, that a two-dimensional experi-
ment can be used to correlate, input and output states,
which is advantageous from spectroscopic view point
[19]. In two-dimensional quantum computation (2D
QC), an extra qubit (observer qubit) is used, whose spec-
tral lines indicate the quantum states of the work qubits
[19]. The 2D spectrum of the observer qubit, gives input–
output correlation of the computation performed on the
work qubits [19]. The 2D spectrum is therefore more
informative than a one-dimensional (1D) spectrum. For
example, in 1D NMR QIP, the spectrum after the
SWAP operation, performed on the equilibrium state
of a homonuclear system, is identical to the equilibrium
spectrum. However the same operation, performed using
a 2D experiment, contains the signature of SWAP gate
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[20]. The observer qubit can also be used to prepare a
pair of pseudo pure states [21]. The quantum logic gates
and several algorithms are implemented by 2D NMR
[16,20,21]. Recently, 2D NMR has also been used to
address the decoherence-free sub spaces, for quantum
information processing [22].

Multi-dimensional NMR spectroscopy is often time
consuming, since each indirect dimension has to be incre-
mented to span the whole frequency range, and the
desired digital resolution [23]. Several experimental proto-
cols have been developed to accelerate the recording of
multi-dimensional spectra. These include, single scan
experiments in the presence of large gradients, GFT,
Covariance spectroscopy and Hadamard spectroscopy
[24–30]. The Hadamard spectroscopy, proposed by E.
Kupče and Freeman, has the advantage that one can
simultaneously label, various transitions of the spectrum
by applying a multi-frequency pulse [27,28]. A suitable
decoding followed by a Fourier transform only in the
direct dimension yields a 2D spectrum [27,28]. This leads
to a large saving in time for experiments having a small
number of transitions [27,28]. In this paper, we use Had-
amard spectroscopy to speed-up the two-dimensional
quantum computing scheme [19].

Information storage and retrieval at the atomic and
molecular level has been an active area of research
[32–39]. Khitrin et al. demonstrated that, the 1H spectrum
of dipolar coupled spin cluster can be used to store large
amounts of information, which can be used for photogra-
phy and implementation of parallel search algorithm
[39–41,43]. Alternately, it has been demonstrated that, spa-
tial encoding under a linear field gradient can also be used
for above purposes [42,44]. In this work, the one-dimen-
sional Hadamard spectroscopy [31] is used under spatial
encoding, to store the information and to implement a
parallel search algorithm. The proposed method has the
advantage that, once the Hadamard encoded data is
recorded, one can write any binary information array
(sentence), and search for any code or alphabet in that
array. The main emphasis of this paper is to demonstrate
the use of Hadamard encoding in the field of NMR
information processing.

In Section 2, we outline the Hadamard method for
2D-NMR QIP along with the conventional method.
In Section 3 we implement, various 2D-gates on 3
and 4-qubit systems. In Section 4, we implement paral-
lel search algorithm by using Hadamard spectroscopy
under spatial encoding and Section 5 contains the
conclusions.

2. Theory

Quantum computing using two-dimensional NMR can
be described by transformations in the Liouville space.
For a spin-1/2 nucleus, having two orthogonal states j0æ
and j1æ, the longitudinal polarization operators can be
written as [19,23],
I0 ¼ j0ih0j ¼
1 0

0 0

� �
; I1 ¼ j1ih1j ¼

0 0

0 1

� �
; and

Iz ¼
1

2
ðI0 � I1Þ ¼

1

2

1 0

0 �1

� �

ð1Þ

A product state jwæ = j001. . .0æ of a coupled spin-1/2 nu-
clei, can be represented in the Liouville space by a density
matrix r, obtained by the direct product of longitudinal
operators,
r ¼ I0 � I0 � I1 � � � � � I0 ¼ I0I0I1 � � � I0: ð2Þ
In 2D-NMR QIP [19], an extra qubit (observer qubit)
is used, whose transitions represent the quantum states
of the work qubits (computation qubits). Thus an
(N + 1)-qubit system can be used for N-qubit computa-
tion, treating the (N + 1)th qubit as the observer qubit.
The thermal equilibrium state of observer spin IO, can
be represented in the Liouville space as [19],
rO
eq ¼ IO

z ½ðI1
0I2

0 � � � IN
0 Þ þ ðI1

0I2
0 � � � IN

1 Þ þ � � � þ ðI1
1I2

1 � � � IN
1 Þ�;
ð3Þ
where the superscript indicates the qubit number, with the
observer qubit represented by the letter ‘O’.

In the following we describe the conventional and the
Hadamard 2D methods (Fig. 1), for a three qubit system,
under the NOT operation on both the work qubits, during
the computation period. The schematic energy level
diagram of a three qubit system and the spectrum of the
observer qubit are given in Fig. 2. The transitions of
the observer qubit, which represent the quantum states
of the other two qubits (work qubits), are labeled as j00æ,
j01æ, j10æ and j11æ. A NOT operation performed during
the computation period, interchanges the states j0æ and
j1æ of both the work qubits.

2.1. The conventional method

As shown in Fig. 1A, the observer spin is first allowed
to evolve for a time t1 during which the work qubits
remain in their initial states, after the frequency labeling
period t1, the computation is performed on the work
qubits, followed by the detection in t2 period. A two-di-
mensional Fourier transform gives the 2D spectrum of
the observer qubit, which shows the input–output corre-
lation of the computation, performed on the work
qubits.

For a three qubit system, the equilibrium state of the
observer qubit IO, can be written as,

rO
z ¼ IO

z ½ðI1
0I2

0Þ þ ðI1
0I2

1Þ þ ðI1
1I2

0Þ þ ðI1
1I2

1Þ�: ð4Þ

The pulse sequence given in Fig. 1A, transforms rO
z as,
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Fig. 1. (A) Pulse sequence for 2D NMR QIP. IO is the observer qubit, and
I1, I2,. . . , IN are work qubits. During t1 period the input states of the work
qubits are labeled followed by the computation, and signal acquisition
during the t2 period. A two-dimensional Fourier transform results the 2D
spectrum of the observer qubit, where the input and output states are
given in F1 and F2 dimensions, respectively. (B) Pulse sequence for 2D
Hadamard NMR QIP, k experiments are performed, where k is the
number of transitions of the observer qubit. In each of the k � 1
experiments, the MF-p pulse is applied on k/2 transitions (explained in
text and Fig. 3). The results of the k experiments can be suitably decoded,
to obtain the output state of the computation, individually for each of
the input states. A two-dimensional spectrum is obtained by inserting the
decoded data at suitable frequencies in the F1 dimension, followed by
the Fourier transform in the F2 dimension.
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rO
z ��!ðp=2ÞOy

IO
x ½ðI1

0I2
0Þ þ ðI1

0I2
1Þ þ ðI1

1I2
0Þ þ ðI1

1I2
1Þ�

!t1 IO
x ½cosðx00t1ÞðI1

0I2
0Þ þ cosðx01t1ÞðI1

0I2
1Þ þ cosðx10t1ÞðI1

1I2
0Þ

þ cosðx11t1ÞðI1
1I2

1Þ�

��!ðp=2ÞO�y
IO

z ½cosðx00t1ÞðI1
0I2

0Þ þ cosðx01t1ÞðI1
0I2

1Þ þ cosðx10t1ÞðI1
1I2

0Þ
þ cosðx11t1ÞðI1

1I2
1Þ�

��!UNOT IO
z ½cosðx00t1ÞðI1

1I2
1Þ þ cosðx01t1ÞðI1

1I2
0Þ þ cosðx10t1ÞðI1

0I2
1Þ

þ cosðx11t1ÞðI1
0I2

0Þ�

��!ðp=2ÞOy
IO

x ½cosðx00t1ÞðI1
1I2

1Þ þ cosðx01t1ÞðI1
1I2

0Þ þ cosðx10t1ÞðI1
0I2

1Þ
þ cosðx11t1ÞðI1

0I2
0Þ�

!t2 IO
x ½cosðx00t1Þ cosðx11t2ÞðI1

1I2
1Þ þ cosðx01t1Þ cosðx10t2ÞðI1

1I2
0Þ

þ cosðx10t1Þ cosðx01t2ÞðI1
0I2

1Þ þ cosðx11t1Þ cosðx00t2ÞðI1
0I2

0Þ�

ð5Þ
Fourier transform performed in both dimensions on the
above signal, gives a two-dimensional spectrum, where
input and output states are given in F1 and F2 dimensions,
respectively. The time consuming part of this method is
the large number of t1 increments, needed to achieve the
required spectral width and sufficient resolution in the F1

dimension. Quadrature detection in the F1 dimension, fur-
ther doubles the number of experiments.

2.2. The Hadamard method

In this method (Fig. 1B), the sequence ðp=2ÞO�y�
t1 � ðp=2ÞO�yGz of Fig. 1A, is replaced by a multi-frequency
p (MF-p) pulse on the observer qubit. Instead of t1 incre-
ments of method (A), the pulse sequence of Fig. 1B, is
repeated k times, where k = 2N, is the number of transi-
tions of the observer qubit. In each of the k experiments,
the multi-frequency p pulse is differently encoded, accord-
ing to the rows of a k-dimensional Hadamard matrix.
For a two work qubit case (k = 4), four experiments are
performed with four different encodings of the p pulse,
given by the four rows of the four-dimensional Hadamard
matrix (Fig. 3A), where ‘�’ and ‘+’ in the matrix corres-
ponds to ‘p pulse’ and ‘no pulse’, respectively. For exam-
ple, + � + � means, the p pulse is applied only on 2nd
and 4th transitions of the observer qubit. The output of
the four experiments (Fig. 3A), under the NOT operation
on both the work qubits, can be calculated as follows,
Experiment (1):

rO
z ���!no pulse

IO
z ½ðI1

0I2
0Þ þ ðI1

0I2
1Þ þ ðI1

1I2
0Þ þ ðI1

1I2
1Þ�

��!UNot IO
z ½ðI1

1I2
1Þ þ ðI1

1I2
0Þ þ ðI1

0I2
1Þ þ ðI1

0I2
0Þ�

���!ðp=2ÞOy �t
IO

x ½cosðx11tÞðI1
1I2

1Þ þ cosðx10tÞðI1
1I2

0Þ
þ cosðx01tÞðI1

0I2
1Þ þ cosðx00tÞðI1

0I2
0Þ�;

ð6Þ

Experiment (2):

rO
z ���!ðpÞj01i;j11i

IO
z ½ðI1

0I2
0Þ � ðI1

0I2
1Þ þ ðI1

1I2
0Þ � ðI1

1I2
1Þ�

��!UNot IO
z ½ðI1

1I2
1Þ � ðI1

1I2
0Þ þ ðI1

0I2
1Þ � ðI1

0I2
0Þ�

���!ðp=2ÞOy �t
IO

x ½cosðx11tÞðI1
1I2

1Þ � cosðx10tÞðI1
1I2

0Þ
þ cosðx01tÞðI1

0I2
1Þ � cosðx00tÞðI1

0I2
0Þ�;

ð7Þ

Experiment (3):

rO
z ���!ðpÞj10i;j11i

IO
z ½ðI1

0I2
0Þ þ ðI1

0I2
1Þ � ðI1

1I2
0Þ � ðI1

1I2
1Þ�

��!UNot IO
z ½ðI1

1I2
1Þ þ ðI1

1I2
0Þ � ðI1

0I2
1Þ � ðI1

0I2
0Þ�

���!ðp=2Þ�t
IO

x ½cosðx11tÞðI1
1I2

1Þ þ cosðx10tÞðI1
1I2

0Þ
� cosðx01tÞðI1

0I2
1Þ � cosðx00tÞðI1

0I2
0Þ�;

ð8Þ

Experiment (4):

rO
z ���!ðpÞj01i;j10i

IO
z ½ðI1

0I2
0Þ � ðI1

0I2
1Þ � ðI1

1I2
0Þ þ ðI1

1I2
1Þ�

�!UNotIO
z ½ðI1

1I2
1Þ � ðI1

1I2
0Þ � ðI1

0I2
1Þ þ ðI1

0I2
0Þ�

���!ðp=2ÞOy �t
IO

x ½cosðx11tÞðI1
1I2

1Þ � cosðx10tÞðI1
1I2

0Þ
� cosðx01tÞðI1

0I2
1Þ þ cosðx00tÞðI1

0I2
0Þ�;

ð9Þ
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Fig. 3. (A) and (B) are Hadamard matrices, which are used to implement two and three qubit gates, respectively (Figs. 5B and 7), by using 2D Hadamard
QIP (Fig. 1B). Each of the columns of the Hadamard matrix are assigned to the transitions of the observer qubit. In the matrix ‘+’ and ‘�’ corresponds to
no pulse and p pulse, respectively. The product operators, associated with each of the encodings, are also given in the last column.
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Fig. 2. (A) Schematic energy level diagram of a three qubit system and deviation populations of the equilibrium state. (B) The equilibrium spectrum of the
observer qubit, whose transitions are labeled as the quantum states of other two qubits.
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where (p)jijæ,jlmæ means, a p pulse is applied on jijæ and jlmæ
transitions of the observer qubit. Each of the four experi-
ments (Eqs. (6)–(9)) generates a composite response of
the computation, performed on the work qubits. However,
the different encoding pattern applied in each experiment,
provides a decoding method of extracting the output state,
individually for each of the input states. The decoding is
obtained by the transpose of the Hadamard matrix. The
decoding of the experiments 1, 2, 3 and 4, for the input
states (Fig. 2B), j00æ, j01æ, j10æ and j11æ are, respectively,
given by,

ð1Þ þ ð2Þ þ ð3Þ þ ð4Þ;
ð1Þ � ð2Þ þ ð3Þ � ð4Þ; ð10Þ
ð1Þ þ ð2Þ � ð3Þ � ð4Þ;
ð1Þ � ð2Þ � ð3Þ þ ð4Þ:
A two-dimensional spectrum of the computation can be
constructed, by inserting the decoded data (time do-
main) at suitable frequencies in the F1 dimension fol-
lowed by a Fourier transform in the F2 dimension
[27]. For example, in the present case, the decoded data
(Eq. (10)) for the input states j00æ, j01æ, j10æ and j11æ
are inserted in the F1 dimension, respectively, at the fre-
quencies x00, x01, x10 and x11 (Fig. 2), followed by a
Fourier transform in the F2 dimension, yielding the de-
sired 2D spectrum.

It is to be noted that, the Hadamard encoding can also
be achieved by J-evolution. For example in the above case
(Eqs. (6)–(9)), the observer qubit can be represented in
terms of product operators (respectively, for Eqs. (6)–(9),
Fig. 3A) as, IO

z , (IO
z I2

z ), (IO
z I1

z ) and (IO
z I1

z I2
z ), after the Hadam-

ard encoding (MF-p pulse). Each of these product opera-
tors can also be prepared by using J-evolution method [13].
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While the conventional method (Fig. 1A) needs a
minimum number of t1 increments for a satisfactory
resolution in the F1 dimension, the Hadamard method
(Fig. 1B) inherently yields high resolution in F1 dimen-
sion and needs only a small number of experiments,
equal to number of transitions of the observer qubit.
It may be noted that for an N work qubits system,
the number of transitions of the observer qubit (for
weakly coupled spins with all resolved transitions) is
2N, thus for small number of qubits (up to about 9
qubits) the Hadamard method is advantageous. The
Hadamard method can also be used for 2D implemen-
tation of quantum algorithms [20,21]. It may be added
that the Hadamard method does not change the scaling
of quantum computing nor does it change the scaling
of any algorithm.
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Fig. 5. (A) Implementation of two qubit NOT(1,2) gate, on a three qubit
system (Fig. 4), by using conventional method given in Fig. 1A; 128 t1

increments are used, with 2 scans for each increment and a recycle delay of
20 s, resulting in a total experimental time of 126 min. (B) Implementation
of two qubit quantum gates by using 2D Hadamard QIP (Fig. 1B). Each
2D gate is recorded in four experiments, taking the total experimental time
of less than 2 min. The encoding of the MF-p pulses, in each of the four
experiments, is given in Fig. 3A. NOP gate requires no pulse during the
computation. NOT(1,2) is implemented by applying selective p pulses on
both the work qubits I1 and I2. Swap gate requires six transition selective p
pulses on transitions j110æ–j111æ, j010æ–j011æ, j101æ–j111æ, j001æ–j011æ,
j110æ–j111æ and j010æ–j011æ, CNOT(1) requires two selective p pulses on
transitions j001æ–j011æ and j101æ–j111æ. The phases of the p pulses during
the computation, are set as (x,�x,�y,�y), in order to reduce the
distortions due to pulse imperfections.
3. Experimental implementation of quantum gates

3.1. Two qubit gates

The system chosen for implementation of two qubit
gates, is C2F3I, where the three fluorines can be treated
as three qubits. The fluorine spectra are shown in Fig. 4.
The transitions of the observer qubit IO are labeled as
j00æ, j01æ, j10æ and j11æ.

The two-qubit NOT(1,2) gate (NOT on qubits 1 and 2)
is implemented (Fig. 5A) using method (A), with 128 t1

increments, a recycle delay of 20 s (�5T1) and 2 scans for
each increment, resulting in a total experimental time of
126 min. The two-qubit NOT(1,2) and several other gates
implemented by method (B), are shown in Fig. 5B. The
Hadamard encoding, shown in Fig. 3A, is achieved by
MF-p pulses of duration 100 ms. The unitary operators
and computation pulses for various two-qubit gates are
given in [20]. The NOP gate is a unit matrix, hence the out-
put states are same as input states, NOT(1,2) interchanges
j0æ and j1æ of both the work qubits, SWAP gate interchang-
es the states j01æ and j10æ, and CNOT(1) gate interchanges
the states j01æ and j11æ. Each 2D gate of Fig. 5B, is record-
ed in four experiments, which for same recycle delay as in
method (A), takes the total experimental time of less than
2 min.
Fig. 4. Fluorine spectra of C2F3I. The three fluorines form a three qubit syste
X1 = 11807 Hz, X2 = �17114 Hz, and the J-couplings are JO1 = 68.1 Hz, JO2

represent the quantum states of the work qubits (I1 and I2). The relative signs
3.2. Three qubit gates

The four fluorines of 2-amino, 3,4,5,6-tetra fluoro ben-
zoic acid, can be used as four qubits. The one-dimensional
m. The chemical shifts of work qubits with respect to observer qubit, are
= �128.8 Hz, and J12 = 48.9 Hz. The transitions of the observer qubit IO

were determined by selective spin tickling experiments [23].



Fig. 6. Fluorine spectrum of tetra-fluro benzene. The four fluorines form a four qubit system, where IO is the observer qubit, whose transitions are labeled
as the quantum states of the three work qubits (I1, I2 and I3). The chemical shifts of work qubits with respect to observer qubit, are X1 = 13564.2 Hz,
X2 = 6845.8 Hz, X3 = �5261.2 Hz, and the J-couplings are JO1 = 10.5 Hz, JO2 = 20.5 Hz, JO3 = 6 Hz, J12 = 9.5 Hz, J13 = 22.7 Hz and J23 = 21.9 Hz.
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spectra of observer qubit (IO) and work qubits (I1, I2 and
I3) are given in (Fig. 6),

Since for this system the (IO) spin has eight transitions
the Hadamard method (Fig. 1B) for 2D QC gates requires
eight experiments as outlined in Fig. 3B. Due to small sep-
aration of the frequencies, Fig. 6 (5 Hz, as compared to
40 Hz in Fig. 4), the MF-p pulse needs about 600 ms.
Hence the Hadamard encoding, in this case, is achieved
by using J-evolution method [13], explained below.
C
NOT(2)

I
N
P
U
T

OUTPUT

A NOP

I
N
P
U
T

Fig. 7. Implementation of three qubit gates by using 2D Hadamard QIP (Fig.
I3, are shown in Fig. 6. Each 2D spectrum is recorded in eight experiments. Th
evolution method (explained in text). NOP gate is a unit matrix, hence the out
the states j0æ and j1æ, of the 1st and 2nd qubits, respectively. Toffoli gate interc
work qubits (I1 and I2) are in state j1æ.
The magnetization of the observer qubit, after the Had-
amard encoding (Fig. 1B), can be represented as, IO

z , IO
z I3

z ,
IO

z I1
z , IO

z I1
z I3

z , IO
z I2

z , IO
z I2

z I3
z , IO

z I1
z I2

z , IO
z I1

z I2
z I3

z (Fig. 3B). The pulse
sequence ðp=2ÞOy � ð1=2J OiÞ � ðp=2ÞOx is used to prepare IO

z I i
z,

where the evolution is with respect to JOi. The product
operator IO

z I i
zI

j
z (i „ j) is prepared by the pulse sequence

ðp=2ÞOy � ð1=2J OiÞ � ð1=2J OjÞ � ðp=2ÞOy , and IO
z I1

z I2
z I3

z is
prepared by the pulse sequence, ðp=2ÞOy � ð1=2J O1Þ
�ð1=2J O2Þ � ð1=2J O3Þ � ðp=2ÞO�x. Each 1/2JOi evolution is
B

D

NOT(1)

TOFFOLI

OUTPUT

1B), the 1D spectra of the observer qubit IO and the work qubits I1, I2 and
e Hadamard encoding, in each of the eight experiments, is achieved by J-

put states are same as the input states. NOT(1) and NOT(2), interchanges
hanges the states j0æ and j1æ of the third qubit (I3), provided the other two



z  Gradient

Hadamard encoded
π
2

pulse

Fig. 8. Pulse sequence for the implementation of parallel search algo-
rithm. The multi-frequency p/2 pulse is obtained by modulating the
Gaussian pulse with 256 harmonics and the phase modulation for each of
the harmonics is y or �y. 256 multi-frequency p/2 pulses are synthesized,
which differ from each other, only in the phase modulation, which is
according to the rows of 256-dimension Hadamard matrix, where + and �
in the matrix corresponds to the phases y and �y, respectively. The
duration of the MF pulse is 30 ms, and the gradient strength is 25 Gauss/
cm. The 256 1D spectra obtained individually from 256 pulses, are
independently stored for suitable decoding, for desired information and
search as shown in Figs. 9 and 10.
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achieved by applying selective p pulses simultaneously on the
observer and the ith qubit, in the middle of the evolution
period (1/2JOi).

A NOP gate is implemented, which requires no opera-
tion during the computation, is shown in Fig. 7A.
NOT(1) and NOT(2) are implemented by applying a p
pulse, respectively on I1 and I2 (Figs. 7B and C). The
A

C

D

E

u u

B

j

Fig. 9. (A) Spectrum obtained from the Hadamard decoding of the 256 experim
over the lazy dog. The sentence (B), consists of 215 bits or 43 ciphers, where ea
space = 00000. The ‘‘0’’ and ‘‘1’’ corresponds to ‘‘no excitation’’ and ‘‘excitat
times). (D) The difference spectrum of (A) and (C). (E) The heights of the bars
spectrum (D), the zero intensity (represented by arrow), indicates the presence
01010 (represented by *), is 4.92 units (theoretically 5 units). This method is k
Toffoli gate, which is a universal gate for reversible compu-
tation, is achieved by applying two transition selective p
pulses on transitions j0110æ–j0111æ and j1110æ–j1111æ
(7d). Each 2D gate shown in Fig. 7, takes about 2 min,
for a recycle delay of 8 s. The conventional method with
128 t1 increments, takes about 60 min (spectrum not
shown).

4. Parallel search algorithm

Information storage by NMR, was suggested almost 50
years ago by Anderson et al. [32]. This involves the excita-
tion of various slices of the isotropic liquid (for example
H2O), under the z-gradient, using series of weak radio-
frequency pulses followed by spin echo [32]. Khitrin et al.
[39] demonstrated that, the multi-frequency excitation of
dipolar coupled 1H spectrum of liquid crystal, enables a
parallel (simultaneous) storage of the information, at the
atomic level. In Refs. [39,40], it is shown that, one can
imprint the information written in a binary code, where
‘0’ and ‘1’, in the frequency space corresponds to no
excitation and excitation, respectively. A 215 bit sentence
is written, where each alphabet is assigned a five bit string,
for example a = 1(00001), . . . . . . , z = 26(11100) and blank
space as 00000 [39]. It is further shown that, one can
perform a parallel search on the binary information array
(sentence) using six bit-shifted multi-frequency pulses, to
search for a letter, in a string of letters [43].
ents (Fig. 8), which represents the sentence (B), the quick brown fox jumps
ch cipher is a five bit string, with a = 00001, b = 00010, . . . , z = 11100, and
ion’’, respectively. (C) Ancilla pattern for letter u = 10101, ‘‘uuu. . .u (215
represent the integration of peak intensities of each of the five bit string of
of letter ‘‘u’’, and the intensity of letter ‘‘j’’ having a complimentary code
nown as XOR search.
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Recently, it has been demonstrated that, spatial encod-
ing can also be used for information storage and parallel
search using the single resonance of a liquid such as H2O
in the presence of a linear field gradient [42,44]. Spatial
encoding involves radio-frequency (rf) excitation at
multiple frequencies in the presence of a linear magnetic
field gradient along the z-direction. Spatial encoding was
also used by Sersa et al., to excite an arbitrary three-dimen-
sional patterns, using x, y and z gradients [36–38]. NMR
photography and a parallel search algorithm using XOR
operation have been implemented by spatial encoding
under z-gradient [42,44]. The XOR search requires only
two experiments, in which the first experiment is used to
record the sentence and the second to record the ancilla
pattern of the letter to be searched. The absolute intensity
difference spectrum of these two experiments is obtained,
followed by the integration of the peak intensities of
the 5 bits corresponding to each of the letters. The pattern
of the integrated intensities yields the zero intensity, only
at those places where the required letter is present. The
XOR search not only searches the required letter, but
also searches the letter having the complementary code.
For example, as shown in [44], the letters ‘‘o = 01111’’
and it’s complementary ‘‘p = 10000’’ can be searched
simultaneously.

In this work, the spatial encoding is conjugated with
Hadamard spectroscopy [31]. We synthesize 256 phase
encoded multi-frequency p/2 pulses, each of which consists
of 256 harmonics and excite the 256 slices of the water
A

C

D

E

B

Fig. 10. The Hadamard encoded data is also used to write another sentence, ‘‘p
for letter e = 00101 (C), and the results are given in (D) and (E). The letter z hav
intensity 5 units in (E). The next intensity is of 4 units, which correspond to let
However, only letter ‘‘r’’ is present in ‘‘B’’, occurring thrice and marked by *
sample, under z-gradient (Fig. 8). The phase encoding of
the harmonics, in each of the pulses, is given by the rows
of the 256 dimensional Hadamard matrix, where ‘+’ and
‘�’ in the matrix, corresponds to the phases y and �y,
respectively. Thus the application of the pulse under the
gradient (Fig. 8), creates either Ix or �Ix magnetization
of each slice. The 256 pulses are used to record the Hadam-
ard encoded data of 256 slices, by using the pulse sequence
of Fig. 8. As seen in the previous sections, the Hadamard
encoded data can be suitably decoded to obtain any ele-
ment (frequency) of the Hadamard matrix. It should be
noted that, in this case the Hadamard encoding is per-
formed on the Ix magnetization of various slices, whereas
in the 2D gates (Fig. 1B, Section 2), the encoding is done
on the z magnetization of the observer qubit transitions.
The Hadamard encoded data of 256 slices, stored in 256
separate files, can be suitably decoded to write any binary
information, which requires a maximum of 256 bits.

The Hadamard encoded data is suitably decoded, to
write the sentence, ‘‘the quick brown fox jumps over
the lazy dog’’ (Figs. 9A and B). The XOR search [44]
is performed to search a letter ‘‘u’’, the ancilla pattern
for the letter ‘‘u’’ is decoded in Fig. 9C, and the differ-
ence spectrum of Figs. 9A and C, is shown in Fig. 9D.
Integration of absolute intensities of the peaks of each
of the letters in Fig. 9D, are shown in Fig. 9E. The zero
intensity in Fig. 9E, indicates the presence of letter ‘‘u’’.
Maximum intensity is observed for the letter ‘‘j’’, which
has a code complementary to letter ‘‘u’’. The advantage
rinciples of nuclear magnetic resonance’’ (B). An XOR search is performed
ing the complimentary code 11010 is absent in (B). Hence there is no line of
ters ‘‘j’’, ‘‘r’’ and ‘‘x’’, whose code differ by 4 units from that of letter ‘‘e’’.
in (E).
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of method is seen in the next example, in which the same
data is used to write another sentence and search code
for another letter. Only the decoding pattern is different
in example of Fig. 10A, contains another sentence, ‘‘prin-
ciples of nuclear magnetic resonance’’, which consists of
200 bits of information. The letter ‘‘e’’ is searched by
using the XOR search. The encoded data can also be
used for 256 bits of NMR photography [40–42,34]. The
spatial encoding [42,44] has the advantage that the relax-
ation of all the slices (bits) is uniform. It may be pointed
out that in the liquid crystal method [43] as well as J-
coupled systems [46] all the lines are not independent
and perturbation of one line can cause disturbance in
other lines of the spectrum, which forms the basis of
the Z-COSY experiment [45]. On the other hand, in spa-
tial encoding method the pattern is inhomogeneous
broadened and parts of the spectrum can be indepen-
dently perturbed [42,44].

5. Conclusions

In this paper, we demonstrate the use of Hadamard
encoding for (i) two-dimensional quantum information
processing and (ii) for parallel search using spatial encod-
ing. For (i), this method converts the 2D experiment to a
small number of 1D experiments requiring the Fourier
transformation, only in the direct dimension. The required
encoding can be achieved by using multi-frequency p pulses
or J-evolution method. For (ii) the Multi-frequency excita-
tion and detection of the water sample, in the presence of
z-gradient, maps the magnetization of various slices, to
the frequency space. Each slice is treated as a classical bit
which can exists either in 0 or 1, which in the frequency
space, respectively, correspond to no excitation and excita-
tion. The Hadamard encoded data is suitably decoded for
the information storage and implementation of parallel
search algorithms. It will be interesting to use the
Hadamard spectroscopy, for information storage using x,
y and z gradients.
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